Distributionally Robust Stochastic Optimization with Dependence Structure
نویسندگان
چکیده
Distributionally robust stochastic optimization (DRSO) is a framework for decision-making problems under certainty, which finds solutions that perform well for a chosen set of probability distributions. Many different approaches for specifying a set of distributions have been proposed. The choice matters, because it affects the results, and the relative performance of different choices depend on the characteristics of the problems. In this paper, we consider problems in which different random variables exhibit some form of dependence, but the exact values of the parameters that represent the dependence are not known. We consider various sets of distributions that incorporate the dependence structure, and we study the corresponding DRSO problems. In the first part of the paper, we consider problems with linear dependence between random variables. We consider sets of distributions that are within a specified Wasserstein distance of a nominal distribution, and that satisfy a second-order moment constraint. We obtain a tractable dual reformulation of the corresponding DRSO problem. This approach is compared with the traditional moment-based DRSO, which considers all distributions whose firstand second-order moments satisfy certain constraints, and with the Wasserstein-based DRSO, which considers all distributions that are within a specified Wasserstein distance of a nominal distribution (with no moment constraints). Numerical experiments suggest that our new formulation has superior out-of-sample performance. In the second part of the paper, we consider problems with various types of rank dependence between random variables, including rank dependence measured by Spearman’s footrule distance between empirical rankings, comonotonic distributions, box uncertainty for individual observations, and Wasserstein distance between copulas associated with continuous distributions. We also obtain a dual reformulation of the DRSO problem. A desirable byproduct of the formulation is that it also avoids an issue associated with the one-sided moment constraints in moment-based DRSO problems.
منابع مشابه
Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences
We develop efficient solution methods for a robust empirical risk minimization problem designed to give calibrated confidence intervals on performance and provide optimal tradeoffs between bias and variance. Our methods apply to distributionally robust optimization problems proposed by Ben-Tal et al., which put more weight on observations inducing high loss via a worst-case approach over a non-...
متن کاملDistributionally Robust Project Crashing with Partial or No Correlation Information
Crashing is a method for optimally shortening the project makespan by reducing the time of one or more activities in a project network by allocating resources to it. Activity durations are however uncertain and techniques in stochastic optimization, robust optimization and distributionally robust optimization have been developed to tackle this problem. In this paper, we study a class of distrib...
متن کاملOn distributionally robust joint chance-constrained problems
Introduction: A chance constrained optimization problem involves constraints with stochastic data that are required to be satisfied with a pre-specified probability. When the underlying distribution of the stochastic data is not known precisely, an often used model is to require the chance constraints to hold for all distributions in a given family. Such a problem is known as a distributionally...
متن کاملDistributionally Robust Stochastic Programming
Abstract. In this paper we study distributionally robust stochastic programming in a setting 7 where there is a specified reference probability measure and the uncertainty set of probability mea8 sures consists of measures in some sense close to the reference measure. We discuss law invariance of 9 the associated worst case functional and consider two basic constructions of such uncertainty set...
متن کاملDistributionally Robust Stochastic Optimization with Wasserstein Distance
Distributionally robust stochastic optimization (DRSO) is a robust approach to stochastic optimization problems in which the underlying distribution is not known exactly. It seeks a decision which hedges against the worst-case distribution in an ambiguity set, containing a family of distributions relevant to the considered problem. Unfortunately, the worst-case distributions resulting from many...
متن کامل